
Lecture 25: CBC-MAC

CBC-MAC



Recall: Summary of MAC Schemes so far

One-time MAC: We can construct from 2-wise independent
hash function families. These exist even against adversaries
with unbounded computational power
General MAC: We can construct if One-way Functions Exist.
For example, we use pseudorandom functions (using the GGM
construction) for these constructions. The GGM construction
uses length-doubling pseudorandom generators, and
pseudorandom generators can be constructed from one-way
functions

CBC-MAC



Today’s Summary

Today we shall construct MACs using pseudorandom function
(PRF) family and the Cipher Block Chaining (CBC) technique

CBC-MAC



MAC for Fixed-length Messages I

What we shall use

Pseudorandom Function Family F = {F1,F2, . . . ,Fα}, where
each function Fi : {0, 1}B → {0, 1}B

What we shall construct

Construct a MAC scheme for n-bit messages

CBC-MAC



MAC for Fixed-length Messages II

Gen(). Create a key for the pseudorandom function family.
Return sk $←{1, 2, . . . , α}
Macsk(m). Interpret m = (m1,m2, . . . ,m`), where each mi is
B-bits long and ` =

⌈
n/B

⌉
m1

Fsk

m2

⊕

Fsk

m3

⊕

Fsk

m`

⊕

Fsk

· · ·

τ

CBC-MAC



MAC for Fixed-length Messages III

Versk(m̃, τ̃). Let m̃ = (m̃1, m̃2, . . . , m̃˜̀), where each m̃i is
B-bit long. Return whether τ̃ == τ ′ or not, where τ ′ is
calculated as below.

m̃1

Fsk

m̃2

⊕

Fsk

m̃3

⊕

Fsk

m̃˜̀
⊕

Fsk

· · ·

τ ′

CBC-MAC



MAC for Fixed-length Messages IV

Attack on this Scheme using Arbitrary-length Messages.

The adversary sees the message-tag pair (m, τ), where
m = (m1,m2, . . . ,m`)

The adversary sees the message-tag pair (m′, τ ′), where
m′ = (m′1,m

′
2, . . . ,m

′
`′)

The adversary computes

m̃ =
(
m1, . . . ,m`,m

′
1 ⊕ τ,m′2, . . . ,m′`′

)
The message-tag pair (m̃, τ ′) is a forgery (Check that this
passes verification)

CBC-MAC



MAC-ing Arbitrary-length Messages, First Construction I

What we shall use

Pseudorandom Function Family F = {F1,F2, . . . ,Fα}, where
each function Fi : {0, 1}B → {0, 1}B

What we shall construct

Construct a MAC scheme for {0, 1}∗

CBC-MAC



MAC-ing Arbitrary-length Messages, First Construction II

Intuition for the construction.

We shall use separate sk for each message length to “chain”

The Gen() returns a random sk $←{1, 2, . . . , α}.
The pictorial summary of Macsk(m) is provided in the next
slide

CBC-MAC



MAC-ing Arbitrary-length Messages, First Construction III

Suppose the message is m ∈ {0, 1}n. It is interpreted as
(m1,m2, . . . ,m`), where each mi is a B-bit string and ` =

⌈
n/B

⌉
.

Let [n]2 represent the B-bit binary string that represents the length
of m in binary.

[n]2

Fsk

key

m1

Fkey

m2

⊕

Fkey

m3

⊕

Fkey

m`

⊕

Fkey

· · ·

τ

CBC-MAC



MAC-ing Arbitrary-length Messages, First Construction IV

Note. You can use the same sk to sign messages of different length
using the algorithm presented above!

CBC-MAC



MAC-ing Arbitrary-length Messages, Second Construction I

We append the binary representation of the length of m at the
beginning and CBC-MAC the new message. See the construction
below.

[n]2

Fsk

m1

⊕

Fsk

m2

⊕

Fsk

m3

⊕

Fsk

m`

⊕

Fsk

· · ·

τ

CBC-MAC



MAC-ing Arbitrary-length Messages, Second Construction II

Adding the length at the end is INSECURE! The following
scheme is insecure.

m1

Fsk

m2

⊕

Fsk

m3

⊕

Fsk

m`

⊕

Fsk

[n]2

⊕

Fsk

· · ·

τ

CBC-MAC



MAC-ing Arbitrary-length Messages, Second Construction III

Students are strongly recommended to construct the attack on
their own

Suppose the adversary the message-tag pairs on two different
n-bit messages p and q. Let the message tag pairs be(

p = (p1, p2, . . . , p`) , τp
)(

q = (q1, q2, . . . , q`) , τq
)

The adversary requests to see the tag τm for the message m as
defined below

m =
(
p1, p2, . . . , p`, [n]2, r1, r2, . . . , rt

)
We emphasize that here the adversary requests to see the
signature on a particular message. All previous attacks had the
adversary obtain message-tag pairs for arbitrary messages.

CBC-MAC



MAC-ing Arbitrary-length Messages, Second Construction IV

Now, the adversary can splice out (p1, . . . , p`) to replace
(q1, . . . , q`) in the message m as follows

m′ =
(
q1, q2, . . . , q`, [n]2, r1 ⊕ τp ⊕ τq, r2, . . . , rt

)
Note that the tag of the message m′ is identical to the tag τm

CBC-MAC



MAC-ing Arbitrary-length Messages, Third Construction I

But a small change to the above-mentioned insecure construction is
secure.
All we need to ensure is that the key for the pseudorandom
function used to chain the message-blocks is different from the key
for the pseudorandom function used on [n]2. Let key = Fsk(0) and
key′ = Fsk(1). Now, consider the following construction.

CBC-MAC



MAC-ing Arbitrary-length Messages, Third Construction II

m1

Fkey

m2

⊕

Fkey

m3

⊕

Fkey

m`

⊕

Fkey

[n]2

⊕

Fkey′

· · ·

τ

CBC-MAC



MAC-ing Arbitrary-length Messages, Third Construction III
Check how this new construction prevents the adversarial attack
where the message length was at the end. This is crucial to ensure
that you have a good understanding of this new MAC scheme.

Benefit of having the message-length at the end. We do not
need the length of the message ahead of time. We can even MAC
messages that are coming as a stream!

CBC-MAC


